Practice FRQ Test

Chapter 8

1.

Consider the differential equation $\frac{dy}{dx} = x^2 - \frac{1}{2}y$.

- (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
- (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2, 8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2, 8)? Justify your answer.
- (c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2. Find $\lim_{x \to -1} \left(\frac{g(x) 2}{3(x+1)^2} \right)$. Show the work that leads to your answer.
- (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate h(1).

2.

Let $f(x) = e^{2x}$. Let *R* be the region in the first quadrant bounded by the graph of *f*, the coordinate axes, and the vertical line x = k, where k > 0. The region *R* is shown in the figure above.

- (a) Write, but do not evaluate, an expression involving an integral that gives the perimeter of R in terms of k.
- (b) The region R is rotated about the x-axis to form a solid. Find the volume, V, of the solid in terms of k.
- (c) The volume V, found in part (b), changes as k changes. If $\frac{dk}{dt} = \frac{1}{3}$,

determine
$$\frac{dV}{dt}$$
 when $k = \frac{1}{2}$.

3.

- Let f and g be the functions defined by $f(x) = \frac{1}{x}$ and $g(x) = \frac{4x}{1+4x^2}$, for all x > 0.
- (a) Find the absolute maximum value of g on the open interval $(0, \infty)$ if the maximum exists. Find the absolute minimum value of g on the open interval $(0, \infty)$ if the minimum exists. Justify your answers.
- (b) Find the area of the unbounded region in the first quadrant to the right of the vertical line x = 1, below the graph of *f*, and above the graph of *g*.

Chapter 9

4.

The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the *n*th derivative of f at x = 1 is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1.
- (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer.
- (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2).
- (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2).

5.

The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots.$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g(\frac{1}{2})$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g(\frac{1}{2})$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

6.

Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown above.

- (a) Write the first four nonzero terms of the Taylor series for sin x about x = 0, and write the first four nonzero terms of the Taylor series for sin(x²) about x = 0.
- (b) Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.
- (c) Find the value of $f^{(6)}(0)$.

- $\begin{array}{c} y \\ 120 \\ 80 \\ -1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ x \\ \text{Graph of } y = \left| f^{(5)}(x) \right| \end{array}$
- (d) Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of $y = \left| f^{(5)}(x) \right|$ shown above, show that $\left| P_4\left(\frac{1}{4}\right) f\left(\frac{1}{4}\right) \right| < \frac{1}{3000}$.

At time t, the position of a particle moving in the xy-plane is given by the parametric functions (x(t), y(t)),

where $\frac{dx}{dt} = t^2 + \sin(3t^2)$. The graph of y, consisting of three line segments, is shown in the figure above.

At t = 0, the particle is at position (5, 1).

- (a) Find the position of the particle at t = 3.
- (b) Find the slope of the line tangent to the path of the particle at t = 3.
- (c) Find the speed of the particle at t = 3.
- (d) Find the total distance traveled by the particle from t = 0 to t = 2.

8.

The graphs of the polar curves r = 3 and $r = 3 - 2\sin(2\theta)$ are shown in the figure above for $0 \le \theta \le \pi$.

- (a) Let R be the shaded region that is inside the graph of r = 3 and inside the graph of r = 3 - 2sin(2θ). Find the area of R.
- (b) For the curve $r = 3 2\sin(2\theta)$, find the value of $\frac{dx}{d\theta}$ at

$$\theta = \frac{\pi}{6}$$
.

(c) The distance between the two curves changes for $0 < \theta < \frac{\pi}{2}$.

Find the rate at which the distance between the two curves is changing with respect to θ when $\theta = \frac{\pi}{3}$.

(d) A particle is moving along the curve $r = 3 - 2\sin(2\theta)$ so that $\frac{d\theta}{dt} = 3$ for all times $t \ge 0$. Find the value of $\frac{dr}{dt}$ at $\theta = \frac{\pi}{6}$.

9.

At time t, a particle moving in the xy-plane is at position (x(t), y(t)), where x(t) and y(t) are not explicitly given. For $t \ge 0$, $\frac{dx}{dt} = 4t + 1$ and $\frac{dy}{dt} = \sin(t^2)$. At time t = 0, x(0) = 0 and y(0) = -4.

- (a) Find the speed of the particle at time t = 3, and find the acceleration vector of the particle at time t = 3.
- (b) Find the slope of the line tangent to the path of the particle at time t = 3.
- (c) Find the position of the particle at time t = 3.
- (d) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.